If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+4X-1120=0
a = 1; b = 4; c = -1120;
Δ = b2-4ac
Δ = 42-4·1·(-1120)
Δ = 4496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4496}=\sqrt{16*281}=\sqrt{16}*\sqrt{281}=4\sqrt{281}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{281}}{2*1}=\frac{-4-4\sqrt{281}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{281}}{2*1}=\frac{-4+4\sqrt{281}}{2} $
| 4m-1/5m=2/3 | | 2m-5=3m-9 | | 2.5x+3=12 | | 5(2-x)=3(2x+7) | | 322=1/2h(20+26) | | 2n-3=-14 | | 7-(5x+6)=2 | | (7.2x)-(7.7)+4x+85=0 | | 70.1=b/9 | | C(x)=70x+47500/160 | | 48.1=b/7 | | V+8=(3v+4-v)-2+4 | | 2/s+4/s=670 | | 69.9=b/7 | | C(x)=50x+55000 | | 1.3=c/6c= | | (3x-15)+48=180 | | R=8/7n+38 | | X+2y=9.25 | | 8d=19 | | 4^9x-7=16 | | Y=15x+1/2 | | 6(w+3=) | | X/4=3x/5 | | 5u+8=2(u-8) | | 5u+8=2(u-8 | | -9(x-6)=-7x+36 | | -2+29=-5(y-7) | | 9=-8s-(-7) | | -8(w+4)=3w-43 | | 10p^2=-11p+6 | | 6x+8=4(x-1) |